sintesa lemak

Posted: March 17, 2009 by filzahazny in biokimia
Tags: 
0
II.1 Lintasan Utama Bagi Sintesis De Novo Asam Lemak (Lipogenesis) Terdapat Di Dalam Sitosol
Sistem ini terdapat pada banyak jaringan tubuh, termasuk jaringan hati, ginjal, otak, paru, kelenjar payudara dan adiposa. Kofaktornya mencakup NADPH, ATP, Mn2+, Biotin dan HCO3- (sebagai sumber CO2). Asetil-KoA merupakan substrat-segera, dan palmitat bebas adalah produk-akhir.
Produksi Malonil-KoA Merupakan Tahap Pendahuluan dan Pengontrolan pada Sintesis Asam Lemak
Bikarbonat sebagai sumber CO2 diperlukan pada reaksi pendahuluan untuk karboksilasi asetil-KoA menjadi malonil-KoA dengan adanya ATP dan enzim asetil-KoA karboksilase. Asetil-KoA karboksilase membutuhkan vitamin biotin. Enzim tersebut mengandung subunit identik dalam jumlah yang beragam, yang masing-masing mengandung biotin, biotin karboksilase, protein pembawa biotin karboksil, dan transkarboksilase di samping tapak alosterik pengatur. Karena itu, enzim tersebut merupakan protein multienzim. Reaksi karboksilasi di atas berlangsung dalam dua tahap, yaitu: (1) karboksilasi biotin (yang melibatkan ATP) dan (2) pemindahan karboksil kepada asetil-KoA untuk membentuk malonil-KoA.
Kompleks Anzim Sintase Asam Lemak merupakan Polipeptida yang Mangandung Tujuh Aktivitas Enzim
Ada dua tipe enzim sintase asam lemak. Pada bakteri, tumbuhan, dan bentuk organisme lebih rendah lainnya, masing-masing enzim pada sistem tersebut saling terpisah dan radikal asil ditemukan dalam bentuk kombinasi dengan protein yang disebut protein pembawa radikal asil (ACP; acyl carrier protein). Namun, pada ragi, mamalia, dan burung, sistem sintase merupakan kompleks polipeptidaa multienzim yang tidak bisa dibagi lagi tanpa kehilangan aktivitasnya, dan ACP adalah bagian dari kompleks ini. ACP pada bakteri maupun kompleks multienzim mengandung vitamin asam pantotenat dalam bentuk 4’-fosfopantetein. Dalam sistem ini, ACP mengambil alih peranan KoA. Agregasi semua enzim pada suatu lintasan tertentu menjadi satu unit fungsional multienzim memberikan efisiensi kerja yang baik dan kebebasan dari pengaruh berbagai reaksi yang menyaingi, sehingga efek pengkotakan proses di dalam sel dapat tercapai tanpa pembentukan perintang permeabilitas. Keuntungan lain pada kompleks polipeptida multienzim tunggal ini adalah terkoordinasinya semua enzim di dalam kompleks tersebut karena dikode oleh gen tunggal.
Kompleks enzim sintase asam lemak merupakan sebuah dimer. Pada mamalia, setiap monomer adalah identik dan terdiri atas satu rantai polipeptida yang bisa ditandai serta mengandung tujuh aktivitas enzim sintase asam lemak dan sebuah ACP dengan gugus 4’-fosfopantetein—SH. Di dekatnya terdapat tiol lain dari residu sistein 3-ketoasil sintase (enzim kondensasi) dari monomer lain. Keadaan ini terbentuk karena kedua monomer tersebut berada dalam konfigurasi ”kepala-ekor”. Karena kedua tiol ikut serta dalam aktivitas sintase, maka bentuk yang aktif hanya dimer.
Mula-mula molekul yang mempersiapkan asetil-KoA bergabung dengan gugus sistein—SH yang reaksinya dikatalisis oleh enzim asetil transasilase. Malonil-KoA bergabung dengan gugus –SH didekatnya pada 4’-fosfopantetein ACP dari monomer lain dengan dikatalisis oleh enzim malonil transasilase untuk membentuk enzim asetil (asil)-malonil. Gugus asetil menyerang gugus metilen pada residu malonil, dengan dikatalisis oleh 3-ketoasil sintase dan membebaskan CO2 sehingga membentuk enzim 3-ketoasil (enzim asetoasil). Reaksi ini membebaskan gugus sistein—SH yang sejauh ini ditempati oleh gugus asetil. Dekarboksilasi memungkinkan penyelesaian reaksi tersebut dengan bertindak sebagai tenaga penarik bagi seluruh rangkaian reaksi. Gugus 3-ketoasil mengalami reduksi, dehidrasi, dan reduksi kembali membentuk enzim jenuh asil-S yang bersesuaian. Molekul malonil-KoA yang baru akan bergabung dengan gugus –SH pada 4’fosfopantetein, menggantikan residu asil jenuh pada gugus –SH sistein bebas. Rangkaian reaksi tersebut diulang lebih dari 6 kali, dan residu malonil yang baru disatukan ke dalam setiap rangkaian reaksi sampai tersusun radikal asil 16-karbon (palmitil) yang jenuh. Radikal ini kemudian dibebaskan dari kompleks enzim oleh aktivitas enzim-ketujuh dalam kompleks tersebut, yakni enzim tioesterase (deasilase). Senyawa palmitat yang bebas harus diaktifkan menjadi asil-KoA sebelum senyawa tersebut dapat berlanjut lewat lintasan metabolik lainnya. Peristiwa yang lazim dialami oleh senyawa palmitat adalah esterifikasi menjadi asilgliserol.
Dalam kelenjar mammae terdapat enzim tioesterase tersendiri yang spesifik untuk residu asli C8, C10 atau C12 yang selanjutnya akan ditemukan dalam lemak susu. Pada kelenjar mammae hewan memamah biak, enzim ini menjadi bagian dari kompleks sintase asamlemak.
Dalam satu kompleks dimer akan terlihat dua pusat aktivitas yang bekerja secara independen dan sekaligus membentuk dua molekul palmitat. Persamaan bagi keseluruhan sintesis palmitat dari asetil-KoA dan malonil-KoA diperlihatkan di bawah ini.
CH2CO.S.CoA + 7HOOC.CH2.CO.S.CoA + 14 NADPH + 14H+
CH3(CH2)14COOH + 7CO2 +6H2O +8 CoA.SH + 14 NADP+
Asetil-KoA yang digunakan sebagai penggalak (primer) membentuk atom karbon 15 dan 16 pada senyawa palmitat. Penambahan keseluruhan unit C2 berikutnya berlangsung lewat pembentukan malonil-KoA. Butiril-KoA dapat bertindak sebagai molekul penggalak dalam hepar mammalian dan kelenjar mammae. Jika propionil-KoA bertindak sebagai penggalak, maka terbentuk asam-asam lemakrantai panjang dengan bilangan atom karbon yang ganjil. Peristiwa ini terutama dijumpai oleh hewan memamah biak, tempat propionate dibentuk melalui aktivitas mikroba di dalam usus hewan tersebut.
Sumber Utama NADPH bagi Lipogenesis adalah Lintasan Pentosa Fosfat
NADPH terlibat sebagai donor ekuivalen pereduksi dalam proses reduksi derivate 3-ketoasil maupun 2,3-asil tak jenuh. Reaksi oksidasi pada lintasan pentose fosfat, merupakan sumber utama hydrogen yang dibutuhkan untuk sintesis reduktif asam lemak. Yang mempunyai makna penting adalah bahwa jaringan dengan spesialisasi dalam proses lipogenesis aktif, yaitu hati, jaringan adipose dan kelenjar mammae dalam keadaan laktasi, juga memiliki lintasan pentose pentose yang aktif. Selanjutnya kedua lintasan metabolism dijumpai dalam sitosol dalam sel, sehingga tidak terdapat membrane atau perintang permeabilitas bagi pemindahan NADPH dari lintasan yang satu kepada lintasan lainnya. Sumber NADPH lainnya mencakup reaksi yang mengubah malat menjadi piruvat dengan dikatalisasi oleh “enzim malat” (NADP malat dehidrogenase) dan reaksi isositrat dehidrogenase di luar mitokondria.
Penggunaan piruvat untuk lipogenesis kini diyakini berlangsung lewat senyawa sutrat. Lintasan ini meliputi glikolisis yang diikuti oleh dekarboksilasi oksidatif piruvat menjadi asetil-KoA di dalam mitokondria dan kondensasi selanjutnya dengan oksaloasetat untuk membentuk sitrat, sebagai bagian dari siklus asam sitrat. Proses ini lalu diikuti oleh translokasi sitrat ke dalam kompartemen ini dengan adanya KoA dan ATP, senyawa sitrat tersebut terurai menjadi asetil-KoA dan oksaloasetat lewat katalisasi ATP-sitrat liase. Dengan demikian tersedia asetil-KoA bagi pembentukan malonil-KoA dan sintesis menjadi palmitat. Oksaloasetat yang dihasilkan dapat mebentuk malat lewat enzim malat dehidrogenase yang berikatan-NADH, lalu diikuti oleh produksi NADPH lewat enizim malat. Selanjutnya akan tersedia NADPH bagi lipogenesis. Lintasan ini merupakan sarana pemindahan sejumlah unsur ekuivalen pereduksi dari NADH ekstramitokondria kepada NADP. Sebagai alternative lain, malat dapat diangkut ke mitokondria dan di sini senyawa tersebut dapat membentuk kembali oksaloasetat. Perlu diperhatikan bahwa pengangkut sitrat (trikarboksilat) dalam membrane mitokondria memerlukan pertukaran malat dengan sitrat. Dalam tubuh hewan memamah biak hanya terdapat sedikit enzim ATP-sitrat liase atau enzim malat, karena senyawa asetat pada spesies ini (yang berasal dari usus hewan pemamah-biak) merupakan sumber utama asetil-KoA. Karena terbentuk asetat yang diaktifkan menjadi asetil-KoA di luar mitokondria, senyawa tersebut tidak perlu lagi memasuki mitokondria dan akan membentuk sitrat sebelum menyatu ke dalam asam lemak rantai panjang. Produksi NADPH lewat isositrat dehidrogenase di luar mitokondria merupakan proses yang lebih penting pada spesies ini karena defisiensi enzim malat.
Pemanjangan Rantai Asam Lemak Terjadi di Retikulum Endoplasma
Lintasan ini (“sistem mikrosom”) mengonversi senyawa asil-KoA asam lemak menjadi derivate asil yang mempunyai dua atom karbon lebih, dengan menggunakan malonil-KoA sebagai donor asetil dan NADPH sebagai reduktor yang dikatalisis oleh sistem enzim dengan asam lemak elongase mikrosomal. Gugus asil yang dapat bertindak sebagai molekul penyiap mencakup rangkaian asam lemak jenuh dengan C10 ke atas di samping asam-asam lemak tak jenuh. Keadaan berpuasa dan diabetes (yang dibalikkan oleh insulin) dengan luas akan menghilangkan proses pemanjangan rantai. Pemanjangan rantai stearil-KoA di otak meningkat dengan cepat pada saat mielinisasi, untuk menyediakan asam lemak C22 dan C24 yang terdapat di senyawa sfingolipid.
Sistem mitokondrial untuk pemanjangan rantai kurang aktif dan menggunakan asetil-KoA sebagai donor. Sistem ini bukan semata-mata reaksi pembalikan β–oksidasi karena sistem ini menggunakan berbagai enzim yang berbeda. Fungsinya masih spekulatif.
II.2 Status Nutrisi Mengatur Lipogenesis
Fase anabolik pada nutrisi sering berhubngan dengan penyimpanan kelebihan karohidrat sebagai lemak pada periode antisipasi terhadap defisiensi kalori, seperti pada kelaparan, saat hibernasi, dll. Leih jauh lagi, banyak hewan, termasuk manusia, memakan makanannya dengan diselingi masa interval dan karenanya menyimpan banyak energi dari makanannya untuk digunakan pada saat interval tersebut.
Proses lipogenesis berhubungan dengan konversi kelebihan glukosa serta inermediat seperti piruvat, laktat serta asetil-KoA menjadilemak, dan proses ini merupakan fase anabolik pada siklus ini. Status nutrisi organisme merupakan faktor utama yang mengatur laju lipogenesis. Jadi, laju lipogenesis yang lebih tinggi terdapat pada hewan yang diberi makan kenyang dan dietnya mengandung karbohidrat dengan proporsi yang tinggi. Laju ini akan berkurang pada keadaan asupan kalori yang terbatas atau diet tinggi-lemak, atau jika terdapat defisiensi insulin, seperti pada penyakit diabetes mellitus. Semua keadaan ini berkaitan dengan peningkatan konsentrasi asam lemak bebas di dalam plasma.
Terdapat hubungan terbalik antara lipogenesis hepatik dan konsentrasi asam lemak bebas di dalam serum. Inhibisi lipogenesis yang paling besar terjadi pada kisaran kadar asam lemak bebas yang menimbulkan peningkatan kadar asam lemak bebas di dalam plasma selama peralihan dari keadaan kenyang ke keadaan lapar. Adanya lemak pada makanan juga menyebabkan penekanan lipogenesis di hati, dan jika terdapat lebih dari 10% lemak di dalam makanan, konversi karbohidrat pada makanan menjadi lemak hanya terjadi sedikit. Lipogenesis menjadi lebih tinggi kalau yang dimakan bukan glukosa melainkan sukrosa, karena fruktosa akan memintas titik kontrol fosfofruktokinase di dalam glikolisis dan membanjiri lintasan lipogenik.
II.3 Berbagai Mekanisme Jangka-Pendek dan Jangka-Panjang Mengatur Lipogenesis
II.4 Sebagian Asam Lemak Takjenuh Majemuk Tidak dapat Disintesis oleh Mamalia Sehingga Merupakan Asam Lemak Esensial dari Sudut Nutrisi
Sebagian asam lemak tak jenuh rantai panjang dengan makna metabolic yang penting pada mamalia diperlihatkan pada gambar berikut.
Asam lemak polienoat C20.C22,C24 lainnya dapat dideteksi dalam jaringan tubuh. Asam lemak ini bisa berasal dari asam oleat, linoleat, dan α-linoleat melalui proses pemanjangan rantai. Perlu diperhatikan bahwa semua ikatan rangkap dalam asam lemak tak jenuh yang terdapat secara alami di dalam tubuh mamalia memiliki konfigurasi cis.
Asam palmitoleat dan oleat bukan merupakan asam lemak esensial dalam makanan karena jaringan tubuh dapat menyisipkan ikatan rangkap pada posisi ∆9 kedalam asam lemak jenuh yang bersesuaian. Berbagai eksperimen dengan senyawa palmitatberlabel telah menunjukkan bahwa label radioaktif tersebut memasuki asam palmitoleat dan oleat dengan bebas, tetapi tidak ditemukan dalam asam linoleat serta α-linoleat. Kedua asam lemak ini merupakan satu-satunya jenis asam lemak yang diketahui esensial bagi nutrisi yang lengkap pada banyak spesies hewan, termasuk manusia, dan dengan demikian harus didapat dari makanan. Sebagai akibatnya, jenis asam lemak tersebut dikenal sebagai asam lemak esensial dari sudut nutrisi. Asam arakidonat pada sebagian besar mamalia dapat dibentuk dari asam linoleat, tetapi tidak pada kucing, yang seharusnya asam arakidonat diklasifikasikan sebagai asam lemak esensial. Dalam sebagian besar tubuh hewan, ikatan rangkap dapat disisipkan pada posisi ∆4,∆5,∆6, dan∆9, tetapi tidak pernah diatas posisi ∆9. Sebaliknya, tanaman mampu menyisipkan ikatan rangkap tambahan pada posisi ∆12 serta ∆15 sehingga dapat mensintesis asamlemak yang esensial dari sudut nutrisi.
II.5 Asam Lemak Takjenuh Tunggal Disintesis oleh Sistem Δ9 Desaturase
Sehubungan dengan asam lemak tak jenuh tunggal (monounsaturated fatty acids) yang nonesensial, beberapa jaringan termasuk hati dianggap bertanggung jawab atas pembentukannya dari asam lemak jenuh. Ikatan rangkap pertama yang disisipkan ke dalam asamlemak jenuh hamper selalu berada pada posisi ∆9. Sebuah system enzim, yakni ∆9 desaturase di dalam retikulum endoplasma, akan mengkatalisis konversi palmitoil-KoA menjadi palmitoleil-KoA atau stearoil-KoA menjadi oleil-KoA. Oksigen dan salah satu dari NADH atau NADPH diperlukan untuk reaksi tersebut. Enzim tersebut tampaknya serupa dengan suatu system monooksigenase yang melibatkan sitokrom b5 (hidroksilase). Enzim tersebut terdiri atas tiga komponen protein, yaitu NADH-sitokrom b5 reduktase, sitokrom b5 dan desaturase yang sensitive sianida serta mengandung besi non-heme. Mekanisme pengeluaran hidrogen dari rantai asil belum dipahami sepenuhnya.
II.6 Sintesis Asam Lemak Takjenuh Majemuk Melibatkan Sistem Enzim Desaturase dan Elongase
Ikatan rangkap tambahan yang disisipkan ke dalam asam lemak tak jenuh tunggal yang ada, selalu dipisahkan satu sama lain oleh gugus metilen (diselingi metilen), kecuali pada bakteri. Pada hewan dengan derajat lebih tinggi, semua ikatan rangkap tambahan disisipkan di antara ikatan rangkap yang ada dan gugus karboksil, tetapi pada tanaman dengan derajat lebih tinggi penyisipan ikatan rangkap bisa terjadi di antara ikatan rangkap yang ada dan atom karbon ω(gugus terminal metil). Jadi karena memiliki enzim ∆9 desaturase hewan dapat mensintesis kelompok asam lemak ω9 (asam oleat) secara lengkap melalui penggabungan proses pemanjangan rantai dengan desaturasi. Akan tetapi, karena hewan tidak mampu mensintesis baik asam linoleat (ω6) maupun asam α-linolenat (ω3) mengingat system enzim desaturase yang diperlukan itu tidak ada, maka kedua asam ini harus diperoleh dari dalam makanan untuk melaksanakan sintesis anggota lainnya dari kelompok asam lemak tak jenuh majemuk (ω6 dan ω3). Linoleat dapat dikonversikan menjadi arakidonat. Lintasannya mula – mula terjadi melalui dehidrogenasi ester KoA lewat α-linolenat yang kemudian diikuti oleh penambahan unit dua karbon lewat malonil-KoA dalam system mikrosom bagi pemanjangan rantai untuk memberikan eikosatrienoat. Senyawa terakhir ini mambentuk arakidonat melalui dehidrogenasi selanjutnya. Sistem dehidrogenasinya serupa dengan system yang diuraikan di atasuntuk asam lemak jenuh. Dengan demikian kebutuhan nutrisional akan arakidonat dapat dipenuhi sendiri jika terdapat cukup linoleat di dalam makanan, kecuali palmitoleat (16:1, ω7) yang ditemukan di dalam otak yang sedang berkembang , asam – asam lemak lainnya dari family ω7 tidak ditemukan dengan jumlah berapapun.
Konversi Linoleat menjadi Arakidonat
(Sintesis Asam Lemak Tak Jenuh Majemuk)
Seperti yang diketahui sebelumnya, bahwa tubuh manusia memerlukan asam lemak esensial untuk kebutuhan fisiologis dan proses metabolisme. Terlebih untuk kebutuhan asam lemak tak jenuh majemuk yang berasal dari sumber nabati. Asam-asam ini menghasilkan asam lemak eikosanoat (C20) yang dari asam lemak ini diturunkan golongan senyawa yang dikenal sebagai eikosanoid. Golongan senyawa ini membentuk kelompok prostaglandin, leukotrien, dan lipoksin.
Satu-satunya jenis asam lemak yang diketahui esensial bagi nutrisi yang lengkap pada banyak spesies hewan, termasuk manusia, dan harus didapat dari makanan adalah asam linoleat dan α-linolenat. Di mana merupakan asam lemak esensial dari sudut nutrisi.
Pada sebagian besar mamalia, asam linoleat akan dikonversi menjadi asam arakidonat yang selanjutnya akan menjadi substrat bagisintesis PG2 (prostaglandin), TX2 (Tromboksan), LT4 (Leukotria), dan LX4 (Lipoksin).
Adapun mekanisme konversi dari asam linoleat menjadi arakidonat adalah sebagai berikut.(asam linoleat yang aktif adalah linoleil-KoA).
Lintasannya mula-mula terjadi melalui dehidrogenasi ester KoA lewat γ-linolenat yang kemudian diikat oleh penambahan unit dua-karbon lewat malonil-KoA dalam sistem mikrosom pagi pemanjangan Rantai (mekanismenya serupa dengan sistem elongase mikrosom untuk pemanjangan rantai asam lemak, NADH digunakan oleh reduktase, tetapi NADPH lebih disukai) untuk menghasilkan eikosatrienoat (dihomo γ-linolenat). Senyawa terakhir ini membentuk arakidonat melalui dehidrogenasi selanjutnya.
Pada konversi ini digunakan sebuah system enzim yaitu Δ6 desaturase, yang akan mengubah Linolenoil-KoA menjadi γ-Linolenoil-KoA dengan mengoksidasi NADH menjadi NAD+ dan berlangsung secara aerob(O2).
O2 + NADH + H+  2H2O + NAD+
Pada hewan tertentu seperti kucing, tidak dapat melakukan konversi ini karena tidak adanya enzim Δ6 desaturase dan harus mendapatkan arakidonat dari makanannya.
Arakidonat biasanya berasal dari posisi 2-fosfolipid dalam membran plasma, sebagai hasil aktivitas enzim fosfolipase. Asam arakidonat terdapat dalam membran sel dan membentuk 5-15% asam lemak dalam fosfolipid.
Sistem desaturasi dan pemanjangan rantai sangat menurun kerjanya pada keadaan puasa, setelah pemberian glukagon serta epinefrin, dan dalam keadaan tanpa insulin seperti pada penyakit diabetes mellitus tipe I.
II.7 Gejala Defisiensi Timbul Jika Asam Lemak Esensial Tidak Terdapat Dalam Makanan
Pada tahun 1928, Evans dan Burr memperhatikan tikus yang diberi makan makanan non lipid murni dengan ditambahkan vitamin A dan D ternyata menunjukkan penurunan laju pertumbuhan dan defisiensi system reproduksi. Penelitian selanjutnya, memperlihatkan bahwa sindrom defisiensi tersebut bisa disembuhkan dengan penambahan asam linoleat, asam α-linolenat dan arakidonat ke dalam makanannya. Gambaran klinis selanjutnya pada sindrom tersebut mencakup kulit yang bersisik, nekrosis pada ekor dan lesi pada system urinarius, tetapi semua kondisi tersebut tidak fatal. Asam – asam lemak ini ditemukan dengan konsentrasi yang tinggi dalam berbagai minyak nabati dan dengan jumlah yang sedikit di dalam daging hewan yang sudah dipotong.
Fungsi asam lemak esensial tampak beragam walaupun tidak bisa ditentukan dengan jelas, selain fungsi pembentukan prostaglandin dan leukotrien. Asam lemak esensial ditemukan pada lipid pembangun struktur sel dan berkenaan dengan integritas structural membrane mitokondria.
Asam arakidonat terdapat dalam membrane sel dan membentuk 5 – 15% asam lemak dalam fosfolipid. Asam dokosaheksaenoat (DHA: ω3, 2:6) yang disintesis dari asam α-linolenat atau diperoleh langsung dari minyak ikan, terdapat dengan konsentrasi yang tinggi di dalam retina mata, korteks serebri, testis dan sperma. DHA terutama diperlukan bagi perkembangan otak dan dipasok lewat plasenta serta air susu. Segmen sebelah luar sel-sel batang retina mengandung DHA dengan konsentrasi yang sangat tinggi dan dengan sebagian besar fosfolipid yang mengandung sedikitnya satu molekul. Fluiditas yang tinggi sebagai akibat dari keadaan diatas tampaknyadiperlukan bagi pelaksanaan fungsi rodopsin yang jika diaktifkan oleh sebuah foton akan menimbulkan gerakan lateral dan rotasi di dalam menbran. Penderita renitis pigmentosa dilaporkan memiliki kadar DHA yang rendah di dalam darahnya. Bayi premature memiliki aktivitas enzim ∆4 desaturase yang rendah sehingga menurunkan kemampuannya dalam mensintesis DHA dari prekusor asam lemak n-3.
Di antara banyak fungsi structural yang dimilikinya, asam lemak esensial terdapat dalam fosfolipid, terutama pada posisi-2. Dalam keadaan defisiensi asam lemak esensial , asam lemak polienoat nonesensial dari kelompok ω9 akan menggantikan asam lemakesensial dalam fosfolipid, senyawa lipid kompleks lainnya dan membrane sel, khususnya asam eikosatrienoat ∆5,8,11. Rasio triena : tetraena dalam lipid plasma dapat digunakan untuk mendiagnosis derajat defisiensi asam lemak esensial.
Asam Lemak-Trans Dapat Bersaing dengan Asam Lemak-Cis
Asam lemak tak jenuh trans dengan jumlah yang kecil ditemukan di dalam lemak hewan pemamah biak (misal, lemak mentega memiliki 2-7%) yang dihasilkan dari kerja mikroorganisme di usus hewan tersebut; tetapi, keberadaan asam lemak tak jenuh-trans dengan jumlah yang besar dalam minyak nabati yang terhidrogenasi sebagian (misal, margarine) menimbulkan pertanyaan tentang keamanannya sebagai bahan aditif makanan. Sampai sebanyak 15% dari asam lemak jaringan ditemukan pada saat otopsi dengan konfigurasi trans.
II.8 Senyawa Eikosanoid Dibentuk Dari Asam Lemak Takjenuh Majemuk C20
Arakidonat dan beberapa asam lemak C20 lainnya dengan ikatan yang diselingi dengan metilen menghasilkan senyawa eikosanoid, yakni senyawa yang aktif secara fisiologis dan farmakologis. Senyawa tersebut dikenal sebagai prostaglandin (PG), tromboksan (TX), leukotrien (LT), dan lipoksin (LX). Senyawa-senyawa ini berfungsi sebagai hormon lokal yang menimbulkan efek biokimia ketika berikatan dengan protein-G.
Arakidonat dibentuk dari posisi-2 fosfolipid membran plasma dibantu oleh enzim fosfolipase A2. Arakidonat kemudian menjadi substrat bagi 2 lintasan metabolisme yaitu lintasan siklooksigenase yang membentuk senyawa golongan prostanoid (prostaglandin dan tromboksan) serta lintasan lipooksigenase yang membentuk leukotrien dan lipoksin. Lintasan ini bersifat kompetitif.
Ada tiga kelompok senyawa eikosanoid yang masing-masing terdiri atas prostaglandin, tromboksan, leukotrien, dan lipoksin. Ketiganya disintesis dari asam eikosanoat C20. Senyawa ini dapat diperoleh dari asam lemak esensial linoleat dan α-linolenat serta secara langsung dari asam arakidonat dan asam eikopentanoat dalam makanan.
II.9 Lintasan Siklooksigenase Bertanggung Jawab Atas Sintesis Prostanoid
Sintesis prostanoid diawali dengan konsumsi 2 molekul oksigen yang dikatalis oleh enzim prostaglandin H sintase (PGHS). Enzim ini mempunyai 2 isoenzim dengan aktivitas tersendiri, yaitu PGHS-1 dengan aktitivitas siklooksigenase dan PGHS-2 dengan aktivitas peroksidase. Kedua aktivitas ini menghasilkan senyawa endoperoksida (PGH) yang kemudian dikonversi menjadi prostaglandin D, E,danF, serta menjadi tromboksan dan prostasiklin. Tiap tipe sel menghasilkan hanya satu jenis senyawa prostanoid.
Terdapat beberapa senyawa yang menghambat lintasan siklooksigenase, diantaranya:
• Preparat antiinflamasi nonsteroid (NSAID)
- Aspirin, menghambat siklooksigenase pada PGHS-1 dan PGHS-2 dengan reaksi asetilasi.
- Indometasin dan ibuprofen, menghambat siklooksigenase dengan berkompetisi dengan arakidonat.
• Preparat antiinflamasi kortikosteroid, menghambat penuh transkripsi PHGS-2.
• Imidazol, menghambat tromboksan sintase yang berperan dalam sintesis tromboksan.
Terdapat mekanisme untuk menghentikan pembentukan prostaglandin, yaitu dengan enzim siklooksigenase itu sendiri yang mengkatalisis penghancuran dirinya sendiri sehingga enzim tersebut disebut dengan “enzim bunuh diri”. Prostaglandin yang telah dihasilkan diinaktivasi secara cepat oleh enzim 15-hidroksiprostaglandin dehidogenase. Apabila aktivitas enzim ini dihambat, misalnya oleh sulfasalazin atau indometasin, maka akan memperpanjang waktu paruh prostaglandin.
II.10 Leukotrien dan Lipoksin Dibentuk Melalui Lintasan Lipoksigenase
Leukotrien merupakan senyawa triena terkonjugasi yang dibentuk dari asam eikosanoat dalam leukosit, sel mastositoma, trombosit, dan makrofag. Leukotrien dan lipoksin dibentuk oleh adanya lintasan lipoksigenase sebagai respons rangsang imunologis maupun nonimunologis. Terdapat tiga enzim lipoksigenase yang berbeda yang akan menyisipkan atom oksigen ke dalam arakidonat pada posisi yang berbeda, yaitu posisi 5, 12, dan 15 sehingga membentuk senyawa hidroperoksida (HPETE).
Leukotrien dibentuk lewat lintasan 5-lipooksigenase. Senyawa yang pertama kali terbentuk adalah leukotrien A4 selanjutnya dimetabolisme membentuk leukotrien B4 atau leukotrien C4 melalui penambahan glutation peptida dengan ikatan tioeter. Pengeluaran gugus glutamat pada leukotrien C4 akan membentuk leukotrien D4 dan pengeluaran gugus glisin leukotrien D4 akan menghasilkan leukotrien E4.
Lipoksin merupakan senyawa tetraena terkonjugasi dalam leukosit. Senyawa ini dibentuk dengan menyisipkan lebih banyak atom oksigen ke dalam molekul dengan kombinasi lebih dari satu enzim lipoksigenase.
Leukotrien dan lipoksin dibentuk melalui lintasan lipoksigenase
Leukotrien merupakan kelompok senyawa triena terkonjugasi yang dibentuk dari asam eikosanoat dalam leukosit, sel mastositoma, trombosit dan makrofag melalui lintasan lipoksigenase sebagai respon terhadap rangsangan baik imunologis maupun nonimunologis. Ketiga enzim lipoksigenase (dioksigenase) yang berbeda menyisipkan atom oksigen ke posisi 5, 12, dan 15 pada asam arakhidonat sehingga memberikan senyawa hidroperoksida (HPETE). Hanya 5-lipoksigenase yang yang membentuk leukotrien. Senyawa yang pertama terbentuk adalah leukotrien A4 yang selanjutnya dimetabolisasi menjadi leukotrien B4 atau leukotrien C4. Leukotrien C4 dibentuk melalui penambahan glutation peptida lewat ikatan tioeter. Pengeluaran selanjutnya glutamate dan glisin akan menghasilkan secara berurutan leukotrien D4 dan leukotrien E4.
Lipoksin merupakan kelompok senyawa tetraena terkonjugasi yang muncul di dalam leukosit. Kelompok senyawa ini terbentuk lewat kerja kombinasi lebih dari satu lipoksigenase dengan menyisipkan lebih banyak atom oksigen ke dalam molekul. Beberapa lipoksin (LXA4 hingga LX E4) terbentuk dengan cara serupa seperti pada leukotrien.
Leukotrien dan lipoksin merupakan regulator yang poten terhadap berbagai jenis penyakit.]
Zat anafilaksis yang bereaksi lambat (SRS-A: slow reacting substances of anaphylaxis) merupakan campuran leukotrien C4 dan leukotrien D4 dan E4. Campuran leukotrien ini 100-1000 kali lebih poten daripada histamine atau prostaglandin sebagai konstriktor otot saluran bronkus. Senyawa leukotrien ini bersama dengan leukotrien B4 juga menyebabkan permeabilitas vaskuler dan penarikan serta pengaktifan leukosit; senyawa leukotrien tersebut tampak pula sebagai regulator yang penting pada banyak penyakit yang melibatkan reaksi inflamasi dan hipersensitif segera seperti pada asma. Senyawa leukotrien bersifat vasoaktif dan imunoregulasi seperti misalnya senyawa kontraregulasi pada respon imun.
II.11 Aspek Klinis
Prostanoid merupakan Senyawa Biologis Aktif yang Poten
Tromboksan disintesis dalam trombosit dan pelepasannya akan menyebabkan vasokontriksi serta agregasi trombosit. SintesisTromboksan dihambat secara spesifik oleh aspirin dosis rendah.
Protasiklin (PGI2) diproduksi oleh dinding pembuluh darah dan merupakan inhibitor agregasi trombosit yang poten. Jadi, tromboksan dan prostasiklin bekerja saling berlawanan (antagonistik). Insiden penyakit jantung yang rendah, penurunan agregasi trombosit dan pemanjangan waktu pembekuan pada orang-orang Eskimo Greenland ternyata disebabkan oleh tingginya konsumsi minyak ikan yang mengandung 20:5 omega3 (EPA, atau asam eikosapentanoat); asam eikosapentanoat ini memberikan senyawa-senyawa seri 3 prostaglandin (PG3) dan tromboksan (TX3). PG3 dan TX3 menghambat pelepasan arakidonat dari fosfolipid serta pembentukan PG2 dan TX2. PGI3 merupakan antigregator trombosit yang sama potennya seperti PGI2, tetapi TXA3 adalah agregator yang lebih lemah daripada TXA2. Dengan demikian, keseimbangan aktivitasnya bergeser kearah nonagregasi. Disamping itu, konsentrasi kolesterol, triasil gliserol , LDL, serta VLDL di dalam plasma semuanya terlihat rendah pada orang-orang Eskimo, sementara konsentarsi HDL meninggi -semua faktor ini dianggap berperan untuk menghalangi aterosklerosis dan infark miokardium.
Prostaglandin dengan takaran 1ng/ml akan menyebabkan kontraksi otot polos pada hewan. Penggunaan teurapetiknya yang potensial mencakup pencegahan konsepsi, induksi persalinan pada usia aterm, terminasi kehamilan, pencegahan atau pengobatan ulkus lambung, pengontrolaan proses inflamasi serta tekanan darah, dan pengurangan gejala asma serta kongesti nasal.
Prostaglandin meningkatkan cAMP pada trombosit, tiroid, korpus luteum, tulang janin, adenohipofisis dan paru, tetapi menurunkan cAMP pada sel-sel tubulus ginjal sera jaringan adiposa.